High Hopes Project HAB Launch 6/1/18

Group photo just before launch

I’m going to try and catch up on some long past due posts about the High Hopes Project. Last June we launched from Virginia City High School in Nevada. I posted about the preparation for the launch which will give you good background on the payloads students designed. The launch went flawlessly – perfect weather, not a puff of wind.




Besides the student payloads and GoPro cameras, we launched our Flir infrared camera as well which gave us some interesting perspectives. Note the shadows in this shot:

Note the long shadows from the early morning sun.














Then note what appear to be shadows in this screenshot taken from the video shot by our infrared camera soon after launch:












What appear to be shadows are not. They are cooler areas on the ground caused by the shadows of the balloon and students. Note the balloon has already been launched and is 200 feet in the air (or more), how could its shadow be where it was before it launched?

Here is video of the launch in infrared:

And here is the launch taken from the ground:

One of the student payloads was an interesting sound experiment. The question they were trying to answer was: “At high altitude above 98% of the Earth’s atmosphere, would the air be so thin that sound would not travel through the thin air to be picked up by a microphone?” The students designed a Tie-Fighter from Star Wars (just for fun) and had the Star Wars theme playing on a loop. You can see the ball shaped speaker in the center of the video. They insulated the base so sound would not travel through the payload and be picked up by the microphone. It started out great, but unfortunately at about 42,000 feet it just got too cold (probably around -10F) and the batteries, which had lasted for 3 hours when they did a test in a school freezer at 15F, just quit. We edited together video from launch and then spliced in at about 8,000 feet and then just before the batteries died:

Another student payload took on the engineering task of releasing the “High Hopes” of the world. Students and others from around the world had submitted their high hopes for their school, community and the world through a Google Form or Twitter (about 1100 were submitted). The “Hopes” were printed out and cut out individually and placed in a payload students had designed to open about an hour into the mission. Again the batteries they had tested, and lasted for 5 hours at 15F, that ran the motor that would open up the payload to release the high hopes failed. Fortunately they had designed in a back-up system. When the balloon burst and the payloads fell to Earth at over 200 miles per hour (until the parachute slowed them down at lower altitude) a fin on the side of their payload caught the wind and pulled open a side of the payload and released the high hopes.

High Hopes release at about 95,000 feet












Here is video of the burst and high hopes release in slow motion:

After a flight we like to note what happens to the balloon on the way up. Note in the photo at the top of this post the 2000 gram balloon is probably about 6 – 8 feet across (we over-filled it a bit so it would go up fast and come down before it got too far up in the mountains and private property). When it burst it was just a bit bigger:

At launch the payloads almost cover up the balloon.










But just before burst at 95,000 feet … note any difference in balloon size? If so, why?










Here are some more photos taken up high:











Lake Tahoe on the left, Pyramid Lake on the right at 92,000 feet













Yerington, Nevada, from 90,000 feet. A wide angle setting on this camera and the movement from falling exaggerates the Earth’s curve in the photo.














Many more photos on this Flickr album.

We came very close to “catching” this one on the way down, but were thwarted when we lost cell service (so GPS as well) at a key point in the descent and missed it by about 2 minutes.

Learning is messy!!

Our Annual High Altitude Balloon Project Is Coming Together

We'll launch your "High Hopes" for the world!

NOTE: If you’d like to be part of this project you and your students can send us their “High Hopes” for their school, community and the world and we will launch them up high to 100,000 feet where they will be released to slowly drift down to the ground and become one with the Earth. We’ll print your hopes on biodegradable paper designed to compost. Send your “High Hopes” here or you can tweet them to us by using the hashtag #hhpSTEM. 

We had planned on launching May 17, 2018, but somewhat unusual spring rains have made the high desert dirt roads we rely on a bit sloppy for recovery. Our current launch date is June 1, 2018, weather permitting.

This year Virginia City High School students are designing the engineering and science payloads that will reach altitudes of 80,000 to more than 100,000 feet.

Every “high hopes” launch includes payloads to carry and release the world’s high hopes that are printed out on biodegradable paper. Past designs have attempted to be mechanical in nature using a timer or altimeter to trigger a motor to spring a latch and release the “hopes.” However no group has successfully completed that kind of design, usually because of class time constraints, so they end up with a payload that relies on the chaos that ensues post balloon burst as the payloads plummet to the ground (before the parachute gets enough atmosphere to slow things down) to open flaps on the sides and release the “hopes” … which works well, but engineering motors, Arduinos, pulleys and all is intriguing, so we’ll see what happens.

Engineering payload motor driven latch release for world’s “high hopes.”

Another group is looking into gluing seeds to some of the high hopes in order to spread some flowers around the desert. They are researching what seeds they can distribute that way (don’t want to plant invasive species) and have contacted the local authorities about their idea. They are developing a water soluble glue that also might provide some nutrition for the seeds as well.

Mixing a trial batch of bio-degradable glue.







A payload designed to see how sound is effected by the thin atmosphere at high altitudes is taking on a Star Wars theme. The plan is to play the theme music from Star Wars while a camera records the image, but more importantly the sound during flight through a speaker that is insulated from vibrating the payload, so the sound must travel via the air. Does the thin air effect the sound? 









This should be an interesting payload to fly!




Yet another group wants to test a design to protect plants from the freezing, dry conditions they’ll encounter during the flight (actually very much like conditions on Mars). They’ve set up a group of plants to launch and a identical set to stay on the ground to compare with. They are trying several different ways to insulate the seedlings and seeds they will launch.












Students have also set up a social media campaign including Twitter and Instagram to ask for others to submit their high hopes. Please send us your high hopes and we will launch them high into the stratosphere!

Learning is messy!

High Hopes Launch 11/28/2017

High altitude ballooning, science and STEM

We finally managed to launch a balloon this fall. It’s been in the works for well over a month, maybe two. Weather and scheduling finally came together and we launched on Tuesday, November 28, 2017, from Virginia City High School‘s football field (in Nevada). Virginia City is best known for being home to Mark Twain, who lived, worked and wrote here in the 1860’s, the Comstock Lode gold and silver rush, as being one of the settings for the old Bonanza TV show and a rich history.

We launched about 8:30AM – it was hovering around the freezing mark and the sun was just high enough to start warming us a bit. Teacher Sarah Richardson had the honors to release the balloon after a quick countdown. Besides  3 of our GoPro cameras and various data loggers and communications gear, Sarah’s students had designed a payload to release the “high hopes” of the world we’d collected … including their own (over 700 high hopes were included in their payload) so they were intrigued to see how this whole launch thing works. The “outlooking camera” recorded this:

And the “downlooking camera” recorded this:

This launch was mostly about giving Sarah and her students some experience in how this works. The plan is now for them to design various payloads to carry out science and engineering investigations this spring … that will give them plenty of time to prepare. They designed the payload we launched by breaking into groups that each built a payload to release the high hopes which are printed out on small strips of paper. They then had trials that led to choosing the one we launched. They’ll use what they learned about payload construction and I will be visiting class to facilitate them through the process some, but most of that will fall to Sarah. Here is what the balloon burst looked like at 26,000 meters (85,000 feet) a bit less than 2 hours after launch:

In Quicktime you can play the video frame by frame which is awesome! You miss a lot in real time … besides the hunks of balloon that float by you can see high hopes fluttering through the air and one comes right at the camera and you can read it – “people everywhere” … because it is handwritten it must be one from Sarah’s class (the others were printed out) – I’m hoping we find out which student wrote it.

Folded “High Hope” with the words, “people everywhere” clearly visible – hope to find out what the rest said. About 85,000 feet, that’s Pyramid Lake in the middle of the screen shot.

I’ll be uploading some of the photos we took to Flickr when I get the chance and I’ll add a link to them.

UPDATE: Here is a link to a Flickr set of launch and recovery photos

Learning is messy!


Yes, the High Hopes Project will rise again!

Photo taken from near space, June 2015, from the High Hopes Project balloon.

Photo taken from near space (26,200 meters / 86,000 feet), June 2015, from the High Hopes Project balloon.

I’ve been asked a number of times since the new school year started if the High Hopes Project will happen again this year, and the answer is yes! We met yesterday with a group of dedicated local middle school teachers that requested to have major roles in the project for their classrooms this year and discussed their participation as well as how the rest of the world can be involved. There will be some differences this year, but the return of some of the most popular aspects of the project as well. This Edutopia article about last year’s project will give you some notion of the project and the links on the project wiki page will further inform you about how you can be involved as well as links to photos and videos. We have to resurrect / restore the project blog and web pages, but the Flickr, YouTube and Twitter accounts are still up and running.

We will be bringing back, with a bit of a twist, an elementary bio-engineering project where students (yes, your students can  participate!) do a long term experiment to find a type of paper that will biodegrade quickly, or a substance that can be put on paper to induce it to biodegrade as quickly as possible. The paper has to be able to run through a printer or copy machine BTW …. and we will explain more about the project fairly soon. So be looking for updates here and on the project blog.

Learning is messy!

Just had to share this photo

A week or so ago I came across this photo on my phone. I took it while we were preparing to launch the “High Hopes Project” balloon this past June at Lake Tahoe and had never taken a close look. The balloon had just been inflated and we secured it to a picnic table while we prepared the payloads it would transport to 86,000 feet. I wish I could say I thought a lot about setting up the shot and getting it just right, but truth is I took it pretty spur of the moment because we were all busy getting things ready to go. If you click on the photo it will open in another window and be much sharper. Hope you enjoy it!

The High Hopes Balloon patiently waiting on the beach at Lake Tahoe to be launched spring 2015

The High Hopes Balloon patiently waiting on the beach at Lake Tahoe to be launched spring 2015.

Learning is messy!

Online Presentation: STEM – What Does That Really Look Like In The Classroom

On Saturday, April 25, 2015, I’ll be delivering an online version of one of my most requested presentations: “STEM – What Does That Really Look Like In The Classroom.” I’ll share real STEM projects right from my classroom. The projects will showcase  integrated examples that demonstrate how hands-on STEM provides engaging and motivating opportunities for collaboration and problem solving that when coupled with students communicating and presenting their process and results leads to powerful language arts and math learning. This work isn’t shoehorned into your day, it becomes your day, at least for periods of time.

NSTA Virtual Conference STEM Today For a Better Tomorrow

My presentation is just one of many. The National Science Teachers Association (NSTA) is producing an entire day virtual conference on STEM they are calling, “STEM Today For A Better Tomorrow.” 

From their web page:

“The future is bright for careers in STEM. However, too many students do not have a strong foundation in science, technology, engineering, and mathematics to pursue careers in these fields. In the STEM Today For a Better Tomorrow virtual conference we make the case for the role that STEM education plays for students interested in following a STEM career.”

The conference begins at 10 am Eastern Time and offers a wide range of speakers and presentations. The agenda for the day with descriptions of the sessions is posted on the site as well. One I am looking forward to is offered by Captain Barrington Irving. I recently  co-taught a model hands-on STEM inquiry lesson to teachers demonstrating the power of integrating language arts, math and art. As part of that lesson teachers in the class read an article about the exploits of Captain Irving:

Barrington Irving“In 2007, Captain Barrington Irving became the youngest person to fly solo around the globe. On his 97-day journey, he flew 30,000 miles in a single-engine plane called Inspiration. “


“Barrington Irving Will set the stage for the conference making the case for STEM education as a path for students’ pursuit of STEM careers.” 

Note that attendance to the all day virtual conference costs $99 to non-NSTA members and $79 dollars for members. You can read a description of the conference and see the agenda for the day that begins at 10 am Eastern Time and continues until 6 pm Eastern Time.

Learning is messy!




Two New Updates on the “High Hopes Project”

I got to spend some time today at Cottonwood Elementary School. Students and teachers there are tackling a few of our engineering challenges. I took some photos and wrote a post about the bio-engineering inquiry they are performing over at the High Hopes Project Blog. It’s called “Decomposing Third Graders” or “I saw Third Graders Decomposing At A School Today” – check it out.

Also we shared a post about how just one of the collaborative aspects of this model STEM learning project works – it’s titled: “Just One Collaborative Aspect Of The High Hopes Project” – check it out as well!

Learning is messy!!

Learning Arduinos to Use Arduinos

Just posted about the work going on with the middle school students that are designing the “High Hopes” release mechanism, a  solar panel monitoring system and possibly other systems that will utilize Arduinos. But first they have to learn how … and they’re learning to utilize them with model rockets first! Go check it out. Great messy learning!

Learning is messy!

Balloon Inquiry: What Will Happen And Why?

This was originally posted at the High Hopes Project web site.

Note the 4 party balloons that all started out the same size before they were inflated, on their way to 30,500 meters (100,000 feet ) from a balloon flight last year. On our upcoming flight we will inflate 4 of the same size balloons – the first balloon will be inflated to about 1/4 of its capacity (like the yellow balloon in the photo), the second balloon to about 1/2 of its capacity (see the green balloon above), the third to about 3/4 its capacity (Note the orange balloon), and the fourth balloon will be inflated close to full (Note the red balloon above). What will happen to them during the flight? What are the characteristics of the atmosphere that may effect them and what, if any, will that effect be? Explain your conclusion.

When we launch the “High Hopes” high altitude weather balloon we will include this experiment. We will have a camera recording what happens to the balloons and share those images with you after the flight in late April or early May 2015. So do your research about our atmosphere, discuss with your collaborators, do some heavy thinking, then write what you think will happen. You could even leave your written thoughts here as a comment if you’d like.

Learning is messy!