NSAUVCSI Classroom Visit

Aviation and Drone Tech

My last 5 or 6 posts have focused on the Nevada STEM Underwater and Aerial Vehicle Computer Science Institute (NSUAVCSI) grant I wrote and am now facilitating. 18 middle and high school teachers started out learning a bit of computer programming, then the ethics, safety, educational uses and how-to’s of aerial vehiclesand now underwater vehicles.

Beyond teaching and facilitating the institute classes and activities I’ve begun doing visits to the participating teachers’ classrooms. I’ve waited until now so teachers had time to be trained and then begin utilizing the Parrot, Phantom 3 and OpenROV 2.8 robots with their students.

This week I visited Mike Imari’s class at Dilworth STEM Academy Middle School. Besides science classes Mike teaches an elective called “Aviation and Drone Tech.” He has also received a grant of his own which will provide several models of aerial drones for his students to build and fly later. He’s still not sure when his will arrive so he signed up for the NSUAVCSI to not only get training in utilizing robots in student learning, but to have access to the Institute robots now.

His students have already been programming 6 of the Parrot drones from the grant he checked out, but during my visit the class was involved in several other activities. Some students were finishing up a research project on drone safety and the laws governing drones.










Others were utilizing the ncLab computer programming courses the grant paid for to learn not only programming, but 3D printing as well.























One of the resources available are RF 7.5 flight simulators that allow you to virtually fly different models of drones. It really is a great way to learn to fly them by stick without the “messy” learning part that might include crashing and breaking expensive vehicles before flying a real one. One of Mike’s students was practicing his skills that day.











Still other students were busy building their own model aerial vehicles that cannot actually fly and other devices to learn “making” skills.




























We recently received prop guards for the 19 Phantom 3 Professional quadcopters available for checkout, so Mike is planning on checking some out in the next few weeks. This news was just what his students wanted to hear.

Learning is messy!

A Successful Build!

6 underwater robots swimming in a pool.

Day four of building our OpenROV underwater robots was very eventful. The original thinking was that it would take 4 full days of our 5 scheduled classes to finish building our robots, and not until the 5th day would we be able to try them out. However the teams of  2 to 3  teachers proved the power of collaboration as it became apparent last week that they would be ready in less time. In fact we did take time from building to have lectures on different aspects of underwater robots and we even took a tour of the facilities at the Tahoe Science Center.

The past 2 days included finishing assembly, testing out controls, aligning and focusing the scaling lasers, calibrating the compass and a bit more. While engaged in those activities a local TV station showed up and produced this story about what we were up to.

Below: Aligning the scaling lasers by projecting them on 2 dots 10 centimeters apart on the wall.



Right: Still wiring and soldering to finish up as well.


Above: The OpenROV’s starting to look like underwater robots.

Below: Touring the Tahoe Science Center facilities and learning about field trip possibilities.












The TV cameras were rolling: DSCF0179

Saturday morning was the last push to be ready to swim our ROV’s. The local public pool had reserved time between 2:00 and 3:30 to use their pool as a test facility, so 1:30 was our  deadline to pack-up and get to the pool. Every detail was checked. Connections to the Chromebook computers, camera operation, thruster operation, lights, lasers, all checked.

Below: The connection to the computer checks out. Once the connection is made the interface opens in a web browser of your choice.












Before we knew it we were off to the pool. The unheated water was cold, but even so one of the life guards volunteered to jump in and help us with a few early tests for water tightness. Once we had the first one cruising the pool she also swam into view so we could take underwater photos of her. We still haven’t downloaded this yet, but we might share them in the future.

Below: First step is to place the ROV into the water and check for any bubbles. Bubbles mean LEAK! and immediate removal to find the source. All 6 of our ROV’s passed the leak test with flying colors.














Then it was time to swim:


Below: Each teacher in the institute received a waterproof digital camera. Here the daughter of one of the teachers uses one to get underwater photos of Mom’s vehicle.

DSCF0208Below: Testing the scaling lasers and maneuvering towards a rubber crab on the bottom of the pool.


Below: Lights check out OK.

DSCF0211Needless to say the excitement was palatable. Visitors and people that work at the pool followed our progress and wanted to touch the devices. Next we plan to launch them in Lake Tahoe and swim them for a day. Then they can be checked out by teachers to use in their classrooms. Woo hoo! It was a great day.

Learning is messy!


This Low-Cost Robot Can Help You Explore the Ocean – Nat Geo Live

One of the resources we shared with teachers in the Nevada STEM Underwater and Aerial Vehicle Computer Science Institute this past weekend was this video explaining how OpenROV got its start by David Lang. It’s a “TED Talk-like” video produced by National Geographic. I especially appreciate his references to “citizen science” projects.

From the description of the video on YouTube:

“Originally interested in building an underwater robot to explore a cave rumored to have gold and treasure, 2016 National Geographic explorer David Lang and a friend had no idea where their curiosity and drive for exploration would lead them. They turned to the Internet for help building their underwater robot, and a community of people emerged to assist. With the ability to descend to a maximum depth of a hundred meters, their low-cost underwater robot, called OpenROV, is redefining ocean exploration. Hear Lang talk about the journey to build OpenROV, how it is inspiring people to explore and engage in citizen science projects, and how the latest technology is creating a wave of low-cost, do-it-yourself products that are making new forms of exploration accessible to people all over the globe.”

The video runs about 8 minutes. Enjoy!

Learning is messy!

Building our 6 OpenROV underwater robots

Teachers being messy - learning "Making" skills

The Nevada STEM Underwater and Aerial Vehicle Computer Science Institute (NSUAVCSI) was designed to provide professional development for 6th through 12th grade teachers in not only computer programming, aerial vehicles and underwater robots, but to more importantly then make those resources available to their students. My last several posts have been about our progress so far in the computer programming and aerial vehicle aspects. Now we have begun the underwater robot section of the institute.

I chose to purchase 7 OpenROV 2.8 underwater robots partly because they would have to be assembled. Many teachers have limited “making skills,” and assembly of these vehicles requires soldering, wiring, acrylic welding, gluing with epoxy, super glue, other adhesives and more. Dr. Alex Forrest from the University of California, Davis,  the lead instructor for this portion of the class, received one of the 2.8s weeks ago so he could assemble one to prepare to guide the teachers through the process. There are excellent directions online provided by OpenROV on how to build the robots, but having an experienced builder there able to share their “messy” mistakes and learning during the build has been invaluable to say the least.

Friday the 18 teachers in the institute met at the Tahoe Science Center home of the Tahoe Environmental Research Center (which is affiliated with UCD, hence Alex’s connection) to learn the science and engineering behind UAV’s, but also to begin assembling the 6 vehicles they’ll be able to check out for use with their students.

Above: Dr. Alex Forest begins class with a short presentation on the hows and whys of underwater vehicles.

Below: The goal – an assembled OpenROV 2.8 next to an unassembled one.

First steps involved acrylic welding the parts of the housing making sure everything was lined up and turned the correct way before making the weld … a bit nerve wracking.












After much of the welding and gluing was done and parts started to take shape it was time to begin wiring and installing circuit boards and other electronics.

DSCF0115Above: Alex clarifying the next step


Above: Things taking shape while double-checking the online directions.

Below: “Shrink wrapping” soldered wiring connections with a heat gun.


Lots of gluing and wiring, but below, lots of soldering too.


This is where we left it at the end of the day Saturday. We meet next Friday and Saturday to finish building and perhaps even give them a tryout in the public swimming pool. A day at Lake Tahoe will come in October.

Learning is messy!

Video from our computer science and AUV class

I recently blogged about our current course for teachers on computer programming and aerial and underwater vehicles (drones). The underwater vehicle section starts this week. In the meantime, Kirk Ellern at AboveNV, who taught the bulk of the aerial vehicle part of the class, put together this short video that illustrates what teachers learned about in his section of the class. Enjoy!

Learning is messy!

Update on our aerial and underwater drone class

We've been busy!!

It’s been almost 2 months since I shared about how this class is going. We got started  later than planned because we couldn’t get drones delivered fast enough. So far the 18 teachers have had 2 days of computer programming training with the ncLab online course (which their students have access to as well at school and home) to acquaint them with and put them at some ease as to how the course works. We originally planned 4 trainings up front but decided to wait on the last days so they can be designed to support the teachers and their students in the very kind of programming they will use with the various vehicles.

Next, we jumped into 24 hours spread over a week of training with aerial drones. We started with safety, ethical use and the laws governing drone use. Then everybody got a Parrot Rolling Spider mini-drone. We ran into some issues with getting the firmware updated. We are using 3 different drone apps for the Spiders – Free Flight3, Tynker and Tickle. They required updating the firmware before the apps would cooperate with the Spiders, but that was problematic … even though I had done a couple the day before to be sure we wouldn’t have trouble … we did. Computers wouldn’t “see” the connected Spider and the bluetooth connection you can use with Free Flight 3 tended to time out before it was successful. But we eventually figured out a method that worked and plugged them in to charge.



Teachers then practiced programming their Spiders and ended that day in groups of 3-4 planning how they would use them in class with their students. The following day each group shared out lesson ideas and even some early experiences with just their one Spider in class (we have almost 50 of them that can be checked-out for classroom use in sets of 8 – 12).

Teachers were given initial instruction and some practice in DroneBlocks as one way they and their students can program their Phantoms. Just this past Saturday we all met to fly some of the 19 Phantom 3 Professional drones the grant provided. Thursday night teachers took turns flying the Phantoms virtually using Real Flight 7.5 and the built in flight simulator that comes on the Phantom remote. After a follow-up “ground school” of sorts on Saturday and some demonstration flights of different kinds of drones the teachers got to fly the Phantoms.

IMG_6421 (1)
DSCF0052 A “Hex” drone takes flight




Today I got all the Phantoms prepared to be checked out to teachers to work with their students, but Saturday they decided everyone should check one out for a week or so to practice setting things up and gaining confidence. Tomorrow my goal is to update the firmware on the 50 additional Parrot drones and get them ready to be checked out as well.

Next week we start underwater vehicles with OpenROV 2.8‘s.DSC_0243





Learning is messy!

Nevada STEM Underwater and Aerial Vehicle Computer Science Institute

I shared on Twitter not long ago, “The good news is I got a grant! The bad news is I got a grant!” There is too much truth in that dichotomy, but in spite of all the extra work and rules and policies and bids and other “red tape” to be dealt with to purchase the supplies and organize the classes … this is an awesome opportunity for all concerned.

The grant requirements demanded a focus on middle and high school teachers and students, computer programing, and a STEM learning emphasis. You’ll note by the name of the grant (see the title of this post) that the grant department folks that helped in editing, implored me to mention as many aspects of the program as possible in the title.

The choice of underwater and aerial vehicles was an easy one … Nevada has been designated one of 5 states where regulations about drones have been eased to encourage research, testing and innovation in drone use (the fact that Nevada contains huge expanses of open land and 4 seasons of weather may have helped). In addition, with the emphasis on encouraging students to study computer programming … and the fact that these vehicles can be programmed … using drones in class to motivate students to engage in both seemed like a perfect match.

CgDx3-2UAAMh6Et24 teachers, 2 middle school and 2 high school teachers from each of the 6 school districts I serve will be chosen to participate. We will start by doing 2 days of computer programming and 3D modeling utilizing the ncLab online course guided by its developers (a local startup company). Just enough to get teachers started in programming, but also to acquaint them with the online course since it will be available for them and all their students for the next year. I felt that if teachers had even some experience with programming and the online course they would be more likely to use it with their students. Students will have access to the course at school, but also at home or anywhere they can get online, so they can go as far as they like.

Each teacher will receive a Parrot Minidrone Rolling Spider – the kind you control with your phone or pad device, and a waterproof (to 10 meters) and drop proof (from 1.5 meters) digital camera to archive their learning in the institute and student learning in their classrooms. ParrotMiniDrone

Next, teachers will spend 3 days learning about aerial vehicles from Kirk Ellern (a former high school physics teacher) at AboveNV – a local startup. They’ll fly their “Parrots” and learn how to program them (after the institute they’ll have 4 sets of 10 Parrots they can check out for use in their classrooms). After that introduction to aerial vehicles we’ll move on to Phantom 3 Advanced drones. Here we will put the programming we learned (and note what we want to learn more about) in the ncLab course to work. Four sets of three Phantom 3 drones will be available for checkout by participating teachers forphantom3-drone-300x200 use in their classrooms.

The next 5 days of class will be spent partially assembling and utilizing OpenROV 2.8 underwater vehicles. “Maker skills” will be emphasized as teachers will be taught soldering, wiring, gluing and more to prepare the vehicles for use.  6 OpenROV 2.8’s will be available for checkout by participating teachers. The 2.8’s are operated using a laptop and tether and are capable of depths up to 100 meters. They come with a camera – video/photos and sound can be recorded on the connected laptop … there’s even room for small payloads for doing research – another opportunity to use those computer programming skills as well. Alex Forrest from the Tahoe Environmental Research Center and the University of California, Davis, will lead this portion of the class. Alex has done research in Lake Tahoe utilizing those big “torpedo sized” vehicles you’ve probably seen on the news. He is just back from 3 years in Tasmania.

OpenROV 2.8 Underwater Vehicles







Throughout the school year the course instructors, all specialists in their fields, will be available to consult teachers, visit classrooms and provide follow-up instruction – to me this is a key component of the grant.

Field trip buses will be paid for so participating teachers can take their classes to a water source (lake, pond, wetland, river/stream pool) to operate and do research with the OpenROV’s.

The institute should start up in August and the initial classes will be done by October. I’ll post updates here. I’ll also set up YouTube/Flickr/Wiki and other accounts to archive our progress.

Learning is messy!

Cantilever Spans Supplies / Cost



For those of you that have been in my trainings or read about our cantilever spans lessons, and wondered about supplies for them, I recently ordered 100 pounds of washers ( two 50 pound boxes – about 2200 washers total) and 1,000 paint stir sticks (or really as I found out paint “paddles“) and today they came in.



WasherBoxThe washers cost $254.00 ($127 per box) and 1,000 paint paddles printed on one side were $125. (NOTE: blank paddles were about $85 per 1,000). The washers we purchased locally at R&E Fasteners in bulk. The paint paddles we purchased from American Paint Paddle Company.

You don’t need this many for just one class. This is enough washers to make at least 3 class sets of washers – that’s 8 bags of washers per class (1500 grams per bag – around 75-85 washers) 1,000 paint paddles is enough to make 66 sets of 15 per set (That’s enough for 8 classes)

(These numbers are based on 8 groups of 2 – 4 students, per class – so a class of 32)

This is a typical set for a group of 4 students along with a tape measure and data recording sheet to keep track of length measurements.

This is a typical set for a group of 2 – 4 students along with a tape measure and data recording sheet to keep track of length measurements. 1500 grams of washers is a usable, general amount, enough to build a structure, but limited enough to encourage re-engineering to strive for more length. However, depending on circumstances, we sometimes allow more to almost unlimited amounts.

(NOTE: In the past we have gotten paint paddles for free from one of the big box hardware stores I won’t mention here (*see bottom of page). Not wanting to count on always being able to get free paint paddles we checked into the cost (see above), which is fairly doable if the free option isn’t available. The materials should last for a long, long time as well, there isn’t a repeated cost every time you do the activity.

The washers are fairly expensive, about 11 cents each if my math is correct, so we are always on the lookout for a free or really cheap alternative. Please share any ideas you might have.

Remember – much more on this lesson available here – cantilever spans lessons.


Learning is messy!




  • Home Depot is the place …  Lowes, and other stores’ paint paddles tend to be warped, not straight, we’ve tried them all. So you can ask at your local Home Depot – we’ve had success when we explain what we are using them for.

New STEM Lessons / Activities Wiki



Per request I recently set up a new wiki page as a kind of “clearinghouse” of the different STEM lessons and activities I write about on this blog and elsewhere to make them easier to find. I’ll update it regularly and perhaps add support links for the different lessons as well. There is also a link to the wiki on this blog under the link at the top of this page “STEM Lessons/Activities.”

Learning is messy!

NASA Pathway to Space – Drone Edition

Rockets and High Altitude Ballooning Yet To Come

PathwaystoSpace2015_Inservice_pdf I announced the NASA Pathway to Space class for teachers about a month ago:

“Starting next week a team of educators (including me) will be providing a class for local teachers of grades 3rd – 12th which will include hands-on training in building and flying drones, rockets, planes and designing payloads which we will then launch on a high altitude balloon to somewhere between 65,000 to 100,000 feet.”

I mentioned at the time how, along with the training, teachers would receive a drone (UAV) and build and keep another as part of the class. The first 4 classes focused on drones. Not just building and flying them, but on the laws and ethics that teachers and students must take into account in using them.

Below: Kirk Ellern from “AboveNV” explains some of the rules and laws around drone or UAV use. DSCF0289


Above: Participants getting the hang of flying their new drones (cost just less than $50 including remote). 

Learning to fly the little drones is actually more difficult than the larger ones which is why Kirk Ellern and Rob Dunbar from AboveNV suggested using them. “If you can control one of these little fairly indestructible guys, piloting the larger ones is relatively easy.”


Next, each participant built a “chuck” plane from a kit – so named because you throw or “chuck” it to make it airborne. However, these planes are designed to have a motor, remote control and more added to them if one wishes to do so.


Teachers building their planes, YouTube videos demonstrate each step of the building process.



















Above: A first flight

So they’d be ready to fly larger drones they were given time with flight simulator software.

We designed this class so that we meet on 2 to 3 Tuesday evenings to learn about and build drones, rockets, balloon payloads and then on a Saturday to fly what we’ve learned about and built. We were ready now for our “Drone Saturday” – so we met on a soccer field at a local high school and thanks to “AboveNV” and friends bringing multiple drones of all sizes we learned about and flew drones for hours. This included flying some while wearing goggles that see through a camera on the drone, so you are flying the drone like you are onboard.






We really lucked out in that there was not a puff of wind all morning which made it easy to fly all the different sizes and types of UAV’s (Unmanned Aerial Vehicle) we had available. Here’s a link to all the photos from our “Drone Saturday.”

Up next is rockets!

Learning is messy!